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This paper contains an exact solution in series form tc the problem 

presented b/ i*/» irrotationai, ^xisymmetrie flow of an ideal, incompressible 

fluid past a solid torus of circular cross section*    At infinity the fluid 

is assumed to be in a state of uniform motion parallel to the axis of the 

torus*   The solution is based on the use of toroidal coordinates, and is 

given in terms of Legendre functions of fractional order as w»ll as com- 

plete and incomplete elliptic integrals of the first and second Jdr«d.   The 

individual cosqf.cu*ul solutions employed here are interpreted plUyeicaliy 

through the r r^latlou to the basic ring singularities represented by the 

source ring and the vortex ring* 

The problem is first approached via Stokes'  stream function exclusively 

and is subsequently rw-sclved independently in terms of the velocity po- 
s 
f - 

tential aland* The convergence of the pertinent series developments is 

found to be unusually favorable, and a complete stream line pattern, cor- 

responding to an illustrative numerical example, is included* 
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Introduction 

P»>tentisl problems involving toroidal boundaries have received re- 

peated attention in the literature.    Apparently the first investigation 

of this kind is doe to Carl Neumann Qlj^who dealt with the distribution 

of temperature in a solid torus and with the analogous problem in electro- 

statics.    The corresponding axLsymmetrlc problem in ideal fluid flow was 

first investigated by Hicks £2^ and was reconsidered later by Dyson £f], 

who also examined certain unsymmetric flow canes associated with the 

torus.    The rigorous treatment of allied problems in the theory of elasti- 

city is more recent; Freiberger Qx]] disposed of the problem of pure torsion 

of a torus of circular cross section, whereas the case of pure bending was 

treated by the current authors Hf].    It is this last investigation which 

motivated the present study, and the analytical prerequisites needed here 

were established to a considerable extent in connection with the work 

described in Q$]. 

Although the hydrodynamic investigations cited previously yielded 

formal solutions characterising the Imtational axisymmetrle flow of an 

inviscid, incompressible fluid past a torus of circular centerline and 

circular cross section,  the problem appears to be in need of further at- 

tention.    Ricks pi based his analysis on toroidal coordinates and toroidal 

harmonics bat did not deal with the determination of the stream function, 

which is of primary physical interest*    Dyson £3]J; on th* other hand, arrived 

at a representation of the potential and stream functions in terns of series 

of definite integrals; the significance of this representation for numeri- 

cal evaluations of the results appears to be rather limited*    In view of 

kombers in brackets refer to the bibliography at the end of the paper. 
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the currently available numerical tabulations of the Legcndre functions of 

fractional order P6l, a re-^xaadnation of the problem would seem to servb 

a useful purpose* 

In 19U8 Wsinstein PiQ dlscuesad axially symmetric potential flows and, 

in particular, considered an extension of the me'   *>d of sources and sinks 

to cases in which the singularities are no longer confined to the axis of 

symmetry.    This paper stimulated further interest in related problems.   Thus, 

Streeter £8]], with the aid of ring and disk singularities, obtained stream- 

line patterns corresponding to flows around various blunt-nosed half -bodies 

and annular-shaped bodies; his approach is based on a semi-numerical pro- 

cedure*   At the same time elliptic integral representations were established 

[V] for the potential and stream functions appropriate to rotationally 

symmetric distributions of sources and vorticity over circular rings and 

disks.   Concurrently, Van Tuyl Qicf] deduced a similar analytical repre- 

sentation of the flow generated by a uniform source disk, and applied it 

to the study of a new family of half-bodies.    Still more recently, 

Streeter £uf] arrived at the flow around a torus of nearly circular cross 

section by superposition v' a riS£ doublet upon a uniform stream.    This 

solution will later be identified as a first apprertm^i^n to the rigorous 

solution for the torus of exactly circular cross section:   moreover, the 

results to be developed hers are free from the indirect trlal-and-error 

features inherent in Streeter'• approach.    Reference should also be made 

to a paper by Sr.hiffmai and Spencer £l2j in iwiich toroidal coordinates are 

used to study the flow about & lens-shsped object* 

In what follows we examine Certain pertinent sequences of singular so- 

lutions of the governing equations referred to torcidsd cocrd->_2»t^a.    Th6 

physical significance of these component solutions,  in terms of >hich the 



solution to the torus problem will ultimately be expanded, is investigated 

with particular attention to the presence or absence of a circulation in 

the corresponding potential and stream functions!    it is shown how the fore- 

going component solutions may be generated through successive limit pro- 

cesses applied to the basic axisymmetrlc ring singularities of the source 

ring and the vortex ring.    This part of the paper say be of interest beyond 

the present application.    The torus problem is then formulated and solved 

on the basis of the stream-function approach*    A second, independent so- 

lution} renting on the potential-function approach, is indicated merely 

since it provides further insight into the problem under consideration. 

In order to render the present exposition sensibly self-contained, some of 

the material given in [5T\ has also been briefly included here. 

The governing Equations.    Toroidal Coordinates 

For the sake of convenience we suiwwize at this place the basic 

equations governing the steady irrotational flow of an ideal incompressible 

fluid in the presence of axial symmetry.    With reference to the cylindri- 

cal coordinates    (p, )',«), where the z-axis is assumed coincident with the 

axis of symmetry, the velocity potential   0(p,s)    satisfies Laplace's 

equation in the form, 

jptp*P>+ sW • ° <x>2 

and the velocity components are feiven by 

v    « 0 , T    = 0 (2) p        *p* 2 *» V    ' 

Stoker' stream function ^(p,z) is Introduced through the relations. 

2 
Subscripts attached to functions which originally bear no subscript 

denote differentiation with respect to the argument indicated. 
\ 

i 
i 



v,'-t*p>        ^f*t 
(3> 

and, alternatively, adrait3 the representation, 

^(p,«) [p*z «P ' P*p dR] <U> 

in which    (p ,z )    are the coordinates of an arbitrary fixed point in the 

meridional half-plane   p - 0.    In view cf Equation (1), which may be re- 

garded as an integrability condition for Equations (3), the line integral 

(U) is independent of the path, and   ^'(p,*)    is single-valued,  in any simply 

connected domain throughout which   0(p,»)    is regular.    As was emphasized 

by welnstein {j~\, the single-valuedness of    ft can no longer be inferred 

if the domain of regularity of   0   is multiply connected.    Similarly, -\nd 

under analogous circumstances, a single-valued stream function may give 

rise to a multiple-valued velocity potential.    A potential function and a 

stream function which are related according to Equations (3) will hence- 

forth be called conjugate with respect to each other. 

It follows from Equations (1),  (3) that   V conforms to the "stream 

equation", 

and Equations (2),  (3) further imply, 

v. 

A specific velocity field determines its associated potential as well as 

the conjugate stream function only within an arbitrary additive constant. 

Finally, we recall that the curves   ^(p,a) = constant    are the stream 

lines and that   2 7f(ftL -   VI)    constitutes the total flow between the 

stream surfaces generated by   (£/=   ft.    and    tyJ-   ty.. 
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In what follows we shall have occasion to refer to toroidal coordinates 

(*>p» y)    which are defined through the transformation, 

x = —3— cos y y = —3— 3in y, t - —£— (7) 
q-p /' '      q - p /' q-P 

where    (x,y,z)    are the Cartesian coordinates and 

p = cos c*» p = sin a, q - cosh B, q * sinh 0 (8) 

The ranges of the curvilinear coordinates are given by 

o - OL^ 2it,       o * p < co,       o*y£2rr (9) 

so that 

- 1 - p, p - 1, 1 ^ q < co, 0 - q < co (10) 

Furthermore, with the auxiliary notation, 

1/2 
M s U - P) ("•) 

we have, 

V2 

Equations (7),  (8),  (11) imply 

p = (x2 • y2)       * -** (12) 

2 2 
(p - §)   + z2 = -iy p2 <•  (z - £)   = ij (13) 

The coordinate surfaces    J,= constant   are thus spherical bowls of radius 

-r1 
p|        centered on the z-axie at    z * p/p.    The surfaces   p = constant 

are tori, the meridional cross sections of which are the circles of 

radius   q       centered on the p-axls at   p = q/q.    A3   G —• 00    the tori 

degenerate into the circle-^   p = 1>  » s 0»    Figure 1 shows the traces of 

This normalization of the coordinate transformation (7)  is,  of course, 
unessential. 



the foregoing two trutually orthogonal families of coordinate surfaces upon 

the meridional half-planes    y - constant. 

Tha differential of arc-length is defined by 

d8* . (^)2 + (^)2 + (|/)
2 

h h2 h3 

and the metric coefficients here appear as 

(H*) 

h = h2 » F> h> = t (15) 

A routine computation now yields for Laplace's Equation (1) in toroidal 

coordinates, 

.2-, 

whereas the stream Equation (5) becomes 

= 0 (16) 

The toroidal transform of Equations (3) is 

and the toroidal components of the Telocity vector assume the form, 

(17) 

(18) 

P q 

(19) 

Toroidal Potential and Stream Functions 

In this section we consider certain aggregates of solutions to La- 

place's Equation (16) and to the stream equation (17), in toroidal coordi- 

See £l3^> Chapter X, for a discussion of toroidal harmonica. Toroidal 
stream functions are also dealt with in [*5j« 
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nates.    Neither of these two equations is separable in the strict secne. 

There dc exist, however, pseudo-product solutions of the form, 

2(*,p) = /tA(cOB(p) (20) 

to Laplace's equation, whereas the stream equation admits the pseudo-product 

solutions, 

?2 
^(a^)«ic(a)D{}i) (21) 

Substitution of Equations (20), (21) into Equations (16), (17), subsequent 

separation of variables, and adherence to the restriction that the solutions 

sought have a period 2 7T    in a, ultimately yield, 

cos na or sin net    P .m frJLn-V2 (q) or Q n-l/2 

^(*£) c ^Hcos not or sic nttj |Pi.j^(«) or Q
n-i/2^) 

(n= 0, 1, 2, ...) 

(22)' 

where   P     , /?    and   Q        <.    are the Legendre functions of the first and 

second kind, respectively. 

For future reference, we cite Legendre's equation, 

52 ^-V2 * 2qPn-V2 * (°2 " K-l/2 * ° (23) 

and recall the recursion formulas, 

p-n-l/2     Pn-l/2 

^n-l/2 " <2n+1>Pn+l/2 + (2n-1)Pn-3/2 

2^Pn-l/2-:(2n-1)^Pn.l/2-Pn-3/2) 

(2U) 

The primes denote differentiation with respect to the argument   q. 



Equations (2U) are valid for all Integral values of    n, and remain valid 

if   P        /„    is replaced with   Q     -/«.    Vie also note the bilinear identity, 

Pr. - l/2*A - 3/2 " Pn - 3/2Qn -1/2 ''   * ~^2~ 

Furtnermore, we shall need to refer to Laplace's integral, 

p-l/2 W-i da 

VTTs q + q cos a 

and to the integral representation, 

V.*(q)-£ V? 

7T 
cos nob da 

which gives rise to the Fourier expansion, 

(25/ 

(26) 

(27) 
8 

£"#«-: 1/2* «n-V2CO,na 
(26)- 

where a    is defined in Equation (11). 

Equations (26), (27) supply the link to the representation of the Le- 

gendre functions of fractional index in tenns of elliptic integrals. Thus, 

let 

.-V3T" :osh 0/2' k* - ypT? = -fj (29) 

Setting © • ot/2 in Equation (26), we arrive at 

«*/2 
2k 

P i   * — 
-1/2  7T 

d» 

Vl - k2 sin2 0 

2k 
= — K' 

7f 
(30) 

°See [13], art. US. 

78ee [13], p. 381. 

8See [LU], pu UU3. 
o 
The arguaert of   Pn_i/2    ****   ^n-1/2    *8 henceforth assumed to be 

q, unless otherwise specified. 



and setting   0 * {ff - a)/2    in Equation (27), we reach, 

10 

«-l/2 = * (31) 

where    K   and    K"    are the coaplete elliptic integral* of the first kind 

referred to the modulus   k   and the complementary Modulus   k',  respectively. 

Alternatively, we may uaflne moduli, 

yq+q q • q 1 
(32) 

in which 

(33) 

The new moduli are related to   k   and   k', introduced in Equation (29), 

through the Landen transformation, 

*l * I*F»        *i " TTT7 (31*) 

so that 

E, = (1* k«)E« * -£- E» 

^ »  (k-   - 1)E« • y-^-p Et 

(35) 11 

Here    E,    and   E,    are the coaplete elliptic integrals of the first and 

second kind based on   k~.    The moduli    k-, kJ    are identical with those 

10See [11*], p. 507. 

^l'he second of Equations (35) is obtained by differentiating the 
first with respect to k1. 



11 

previously esplcyod by Hicks £2j, Feuquet £l5^» <4°d **>• current authors 

c»i DO- 

Symmetric and AntisyBraetric Flow Fields 

Among the potential and stream functions U«t*d in Equations (22), 

those involving the LBgendre functions of the second kind become infinite 

as    q -•> 1, and therefore violate the regularity requirementa on the z-axio 

inherent in the torus problem to be considered subaequently.    le shall thus 

limit the present discussion to the potential and stress functions involv- 

ing   ?«.i/2    an{* **8 derivative, which remain analytic for every finite    q 

and vanish at Cartesian infinity: they MCOB sissolar on the "limit circle*, 

as   q -*> oo. 

*e may distinguish between two basic flow cases according as the 

velocity field is symmetric or antisyanetric with respect to the plane 

a = 0, that is, according as the velocity potential is an even or odd 

function of   s   and   a.   Symmetric flows are generated bv the potentials 

and stream functions, 

^n" r* Pn- 1/2 C08 »* 

-2 
V   = *r P*    , /« sin na *n     fi rn-l/2 

(n * 0, 1, 2,  ...) 

(36) 

i    ! 
i 

i   : 

i 

• 

I 
! 

It is important to observe that    $      and    V     do not constitute a conju- 
xx n i 

gate pair in the sense of Equations (18) *    le now seek to establish the 
• 

stream function V  and the velocity potential $  which are conjugate 

to $  and V , respectively. To this end we confirm with the aid of 

Equations (16) that, 

! i 
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(37) 

(n K 0, 1, 2, ...) 

Since V = 0, we may take $  to be zero, and the foregoing recursion 

relations yield 

n   o 

*. 

h^i-Vi) 

(2i-D(d)i- $±-1) 

(n = 1, 2, 3, ...) 

(38) 

In order to complete the determination of V  for n = 0, 1, 2, ..., 

we need to find V . For this purpose me introduce the parameter t 

through 

e*(t,k) = © « Z-j-2 (39) 

or, equivalently, through 

t * F(©,k) * 

n© 

„ (i: ra *>v* (Uo) 

am(t,k) being the amplitude function and F(©,k) the incomplete elliptic 

integral of the first kind, both referred to t m  modulus k given in 

Equations (29)* Thus, 

snt c sin © • cos »,   cnt = cos © = sin *,   dnt = 5^   (Ul) 7 .      * V? 



12 
where cm, en, dn denote the Jacobian elliptic functions  for the modu- 

lus k. 

According to Equations (30), (36), and (Ul), we may write 

So^'-l/*"^*' ** (U2) 

Equations (16), applied to the conjugate pair   j $ , ^   • > by virtue of 

Equation (U2), now leac to 

da      n-   L3^ dn3^ 

dp * dn\ 
o _ _ V? k2k' K, snt cnt 

(U3) 

where   B'    is the ccs^lete elliptic integral of the second kind based on 

the modulus   k».    Equations (U3) are explicitly integrable by recourse to 

the identities listed on p. 5l6 of [liT|*    There results 

yo = 2jfi ["(fi - E')t + k2K« **%£*' - K»E(t)l (Ul*)13 

in which   E(t)    designates the incomplete elliptic integral of the second 

kind for the modulue    k.    We note from Equations (38) that   W      and   <J>  , 

which are conjugate to the pseudo-product solutions    <J)     and   "^     of the 

potential and stream equations, no longer possess the pseudo-product struc- 

ture.    Indeed, a single potential function    <£>      gives rise to a conjugate 

stream function   W*    whose representation requires an infinite series of 

stream functions in pseudo-product form; the closed representation given by 

13 

12< 

Lnt< 

13, 

See QV]» Chapter XXII, for a discussion of Jacobian elliptic functions 
and integrals. 

J 

! 
It should be noted that the Jacobian elliptic functions appearing 

here may be eliminated by msans of Equations (Ul). 
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Equations (38), (hh)  was made possible only through the introduction or 

elliptic functions and integrals* 

Since 

am(t + 2K) = ant + 7f 

I(t +  2K) * E(t) + 2E 

and recalling Legendre's identity. 

BE' + B'E - EX« - -3p 

(U5) 

(U6) 

as well as the periodicity properties of the Jacobian elliptic functions. 

we conclude from Equations (Ul*), (38) that 

yB(* + 27T,p) - Vn(a,p) «= 2V? 

(n = 0, 1, 2,  ...) 
(U7) 

The single-valued potentials    $      thus correspond to associated conjugate 

stream functions   V      which are many-valued for   - oo < a < oo, or else 

discontinuous along the cut   aB 0    in the meridional half-plane correspond- 

ing to   0- at,- 2rf, 0 - p < co.    This result is consistent with our 

previous observations regarding the singular character of    $n   as   q -*• oo. 

Or. the other hand, the cot 

are both single-valued. 

The treatment of the anti-symmetric flow fields generated by 

>njugate sequences   J $n,Vn| (n = 1, 2, 3, ...) 

^nc/lPn-V28lnn<1 

s2 

^nC?TPn-V2C08nCt 

(U8) 
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is strictly analogous to the preceding discussion of synnetric fields, and 

we may confine ourselves to stating the pertinent results. 

are conjugate pairs of potential and stream functions, then 

_      - 2 

and  |ln, <Pn 

W'n   --^f1 <*•!-'»> 
(n = 0, 1, 2,  ...) 

CU9) 

and consequently, 

n 

(n = 1, 2, 3,  ...) 

(50) 

Here we nay take (//    = 0 since 0  vanishes, whereas 0  turns out to 

be givei by 

0O = ^[(K- -E-)t-K'B(t)! (51) 

The functions 0 , #. and (£/  are periodic with period 27T in a. On 

the other hand, we find that 

0 (tt* 27f,p) -0 ((1,0) = V? 

(n= 0, 1, 2, ...) 
(52) 

which indicates a circulation in the velocity potentials   0     conjugate to 

the single-valued streaa functions   (/J   , 



16 

We now turn to a physical interpretation cf the potential and stream 

functions discussed in this section. With regard to symmetric flows, we 

noto on the  basis of Equation (3.9) of Rafersr.cn £?] that the potential of 

a uniform source ring of total strength m and unit radius (coincident 

with the limit circle cf the toroidal coordinate system) in our present 

notation appears as 

with r. and K, defined as in Equations (33), (35). A trivial compu- 

tation, involving Equations (53), (35), (33), (32), and (30), identifies 

*C-~$o>   ^=-^o &> V? °      V? 

as the potential and streav   "tions appropriate to the source ring under 

consideration, Moreover, we confirm  with the aid of Equation (U7) that 

the stream function possesses a cyclic period of 2m, as is consistent with 

hydrodynamic theory* 

In a similar manner, guided by Equation (7*5) of Reference [V],  we 

recognise 

V? °     V? ° 
as the potential and stream functions belonging to the antisymmetric flow 

generated by a uniform vortex ring of uirlt radius and total circulation F . 

The circulation constant T    of the velocity potential is readily veri- 

fied by means of Equation ('<?)• 

Equations (5U), (55) establish the significance of the initial members 

in the sequences of symmetric and antisymmetric flows discussed previously. 

: 

i 

^ee £?'2>  Equation (5.7). 
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The remaining members in theeo two aggregates of singular flows, which are 

characterized by singularities of progressively higher order on the limit 

circle, may be generated through successive z-differerrtiations applied to 

the basic singular solutions which represent the source ring and the vortex 

ring.    Indeed, a somewhat tedious computation, depending on the repeated 

use of the Legendre relations (?h), yields the result, 

8^-_      (2n-l)w +n0.2n*J:0 
E wn-1     vn C      wn+1 

30/ 

U       *n-1        *n U x n+ 1 

(n = 0, 1, 2,  ...) 

(56) 15 

Moreover, these recursion formulas remain valid if   $    and   0, as well as 

V   end   (//, are interchanged while the signs of the right-hand members are 

reversed.    As an illustrative example we determine the solution correspond- 

ing to a ring-doublet, whose potential is the first derivative with respect 

to   z    of the potential for a source ring.    By Equations (5U),  (56),  (50), 

the ring-doublet is thus represented by 

2V?   * 

2V? V? ° 

(57) 

and these formulas are readily transformed into the expressions derived by 

Streeter £lll. 

Observe that 0 , * - 0, and V . - - ^,, according to Equations 
(2I»), (36), (U8).   -11-11 
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Solution of the Torus Problem:    The Stream-Function Approach 

We are now In a position to consider the main problem or this investi- 

gation.    Let the boundary of the torus coincide with the parametric sur- 

face   p = p    (s.je Figure 1).    Then, according to Equations (13), 

A = I - q0 = cosh po (58)16 

where a and b are the radii of the cross section and of the centerllne, 

respectively, and ^ will be called the "shape-ratio" of the torus. 

The problem consists in determining a stream function #/(<&,£) Thich 

satisfies Equation (17) throughout the domain 0 - ct£ ?.ff , 0 - p - p , and 

conforms to the boundary and regularity conditions, 

^(tt^^c,   ^(c^)-*^*^ as (*,p) —(0,0)     (59) 

where    c    is the initially unknown value of   (// on the surface of the torus, 

and   tyJ      designates the stream function associated with the uniform Telo- 

city field   v   = 0, v   - 1   at infinity* 

Guided by the antisymmetric nature of the uniform velocity field at 

infinity, w* assume the desired solution in the form, 

2     _® 

V (*$) = %•+ >      »n^n (60) 
n 

with (JJ    defined by the second of Equations (U8), and note that (// 'ot,p) 

automatically conforms to the condition at infinity since (£_(0,0) = 0, 

The coefficients of superposition a (n = 0, 1, 2, ...) are to be deter- 

mined consistent with the boundary conditions for Q = Q  . By virtue of 

Equations (60), (59), (U8), and (12), this leads to 

The subscript, zero, attached to any function of Q,  will henceforth 
indicate its evaluation for p - fl • 

• 

• 
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00 

In order to expand the right-hand member cf Equation (61) in a Fourier 

series, we recall ths expansion (28).   With the aid of this expansion, and 

making use of the identities (2U) applied to the Lsgendre functions of the 

second kind, we thus arrive at 

oo 

cos net 

(62) 

n - 0 ^^ no 
in which    8        designates the Krone eke r delta.    Equation (62) implies no 

un   - 1 

prorided 

2V?Qi  1/2(0 

and, in accordance with Equation (60), the appropriate Telocity potential 
t 

appears as 

oo 

*(*,/» = » + V" *n 0n (65) 

the functions   0     being defined in Equations (50) and (51)* 

It is apparent from the preceding developments that the boundary con- 
i 

ditions (59) do not suffice to determine the yet unknown value c of I// 
i 

on the surface of the torus. This observation is in agreement with the well 

known fact that the boundary conditions fail to characterise the solution 

17 
uniquely If the flow domain is rultiply connected.   It follows from 

This statement, of course, in no way contradicts the uniqueness 
theorems of hydrodynamics, which require also the specification of the 
initial conditionsj see, for example, £l6], p. U22. 

. 
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I 

Equation (52) that the velocity potential represented by Equation (65) is 

multiple-valued unless c is chosen appropriately. In view of Equation (52), 

a circulation-free potential is assured if and only if 

CD 

1 "* an = 0 (66) 

or, by Equation (63), 

n « 0     n = 0 

The complete solution to our problem is now given by Equations (60), 

(65), where (^ and 0  are defined in Equations (1*8), ($6), (51), and 

the coefficients *  follow from Equations (63), (61*), (67). The toroidal 

velocity components are readily obtained from Equations (60), (U8), (12), 

with the aid of Equations (l8)« 

oo 

v - afr+ ^ XI an [^ - v* -(Un2 - "A. - v»]co" •* 
" n = 0 

> = ?'^^ Vn-1/2 [V* 8in °*+ P °" •*] 
'       n = u 

Finally, we note for future reference, that the series (60) admits the 

(68) 

rearrangement, 

.2 " 

n = 0    . m = 0 

Solution of the Torus Problem*    The Potential-Function Approach 

In this section we sketch a second,  independent approach to the problem, 

in terms of the velocity potential.    Although this method of attack is more 

cumbersome than the one adopted previously,  it should nevertheless prove to 

: be instructive*    The alternative formulation of the problem as a problem of 

20 
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Neumann, requires the determination of a function   $((tfi)   which is harmonic 

in the domain   0 - a- 2;* , 0 - p - 0 , and obeys the boundary and regularity 

conditions, 

<*>Po> 
= 0, 0(at,p) -• 0     » t    as    (ct,p) -•• (0,0) (70) 

where 0       is the potential of the uniform velocity field at infinity. Re 
00 

thus put 

oo 

frf(tt,0) = » + b   0 n ^n (71) 

with reference to the definition (U8) of the potential functions   0 • 

Applying the first of conditions (70), we reach with the aid of Equation 

(28), 

<V 1 - bn>Pi+ 1/2<V " (bn " V X>PA- 3/2<«o> ' 

^h-^»-«l*v»v] 
bQ * 0,      (n*= 0f 1, 2, ...) 

(72) 
i 

Equation (72) is a finite difference equation of the second order for the 

unknown coefficients of superposition b (n = 1, 2, 3, •••) which possesses 

an Integrating factor P» ..I/OCO• 

Now let 

cn=<Vbn-l>PA-l/2PA-3/2 (73) 
13 

and Equation (72) may be written as 

^ argument of the Lagendre functions appearing In this and the 
following equations is understood to be    q • 



:n+ 1 " cn "   TT    LQ"- 3/2 " Qn + 1/2 J Pn-1/2 (7U) 

This difference equation of the first order la integrablej by use of the 

bilinear identity (2$), we obtain 

c. n 
?i TTi—r rn-l/2 n-3/2 n       n— l 

C75) 

in which    A    is an arbitrary constant of integration.   A second integration, 

based on Equation (75), yields 

(n = 1, 2, 3, ...) 

(76) 

the notarion being that of Equation (6U). In order that the series (71) 

be convergent, it is necessary that 

22 

li»  b n (77) 
n -• oo 

This formal convergence condition, which here takes the place of the single- 

valuedness condition (66), serves to determine the parameter A • Indsad, 

since 

Um     nl «= 0 
n 

n -+•  a> 
(78) 

we conclude from Equations (77), (76), that 

2q 

with   c    define* by Equation (67), and thus, 

(79) 

Recall that the functions   ftn   entering Equation (71), and the con- 
jugate stream functions   ty^   »re all single-valued. 

: 
5 
! 

s • 
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bn=- 
2n - 1 

(n = 1, 2, 3, ...) 

(80) 

the coeff icients a  ret fining their previous definition given by Equa- 

tions (63), (bU), and (67)* This completes tLe independent determination 

of the Telocity potential introduced in Equation (71)* 

With a view toward demonstrating the equivalence of the eolations 

derived in this and the preceding sections, we note from Equation (80) that 

bm " T * — 
a - 6 

(n = 0, 1, 2, ...); b = 0 
o 

(82) 

Consequently, Equation (69) may be written as 

00 n 

^•Si** "J^- K+l> ««> 
It now follows from Equations (83), (U9) that the conjugate velocity po- 

tential appears as 

u 

<«*) 

(85) 

n = 0     m- 0 
which, after a permissible rearrangement, assumes the form, 

a °° 
Zo     |f/^  .    n *n 

n = 0 
Since   0   - 0, Equation (85) is identical with Equation (71).    Tt is 

-interesting to observe that the representation (71) for   0(ot,p), in con- 

trast to that given by Equation (65), does not involve any elliptic fxmction* 

or integrals. 
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Discussion,  Numerical Example 

A comparison of Equations (6$f or (8u) with the second of Equations 

(5?). or of Equation (?1) with the first of Equations ($7), reveals that 

the leading term in the series contributions to   (J/ (<*»p)    and   0(atjp)    are 

precisely the stream and potential fvnctions belonging to the ring-doublet. 

Vhis observation identifies Streeter'a solution £ll3> f°r th» torus of nearly 

circular cross section, as a first approximation to the exact solution pre- 

sented here.    The fact that already a one-tent approximation corresponds 

to a torus whose cross section is very close to a circle, is Accounted for 

by the extremely rapid convergence of the series under consideration* 

Although the convergence of the representation (69) for the stream 

function is even more favorable than that given in Equation (60), it was 

still found to be more expedient to use the latter representation in the 

numerical example which follows.   The reason far this lies in the loss of 

numerical accuracy caused by the difference formations inherent in Equa- 

tion (69). 

The stream pattern shown in Figure 2 applies to a shape-ratio 

A c b/a =3.    It was obtained by choosing various fixed values of   z, and 

by subsequently selecting   at  and   p    judiciously and consistent with the 

last of Equations (7)*    For these values of   a   and   0    the corresponding 

values of   ft were computed from Equation (60) with the aid of the numeri- 

, cal tables £6*J.    A maximum of five terms in the series for   (// was needed 

in order to reach an accuracy of four significant figures.    Once a suf- 

ficient number of s-profiles of the stream surface had been established, 

the streamlines   0^» constant   were determined graphically.    In order        .   .4. 

to locate the stagnation point — the point of intersection of ths separa- 

tion stream line with the meridional section of the torus — Equation (66) 



! 

was solved for v (ot,3) =0. A suitable method of  successive approxi- 

mat ions revealed that v (*,fl ) vanishes to four significant figures for 

cos at- 0,121. 

25 
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FIG    I  - TOROIDAL  COORDINATES. TRACES   OF   SURFACES 
a = CONST  AND £ = CONST.  ON   A  HALF-PLANE 
y. CONST 
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